Title: | Integrating Ecosystem Remote Sensing Products to Derive EBV Indicators |
---|---|
Description: | Essential Biodiversity Variables (EBV) are state variables with dimensions on time, space, and biological organization that document biodiversity change. Freely available ecosystem remote sensing products (ERSP) are downloaded and integrated with data for national or regional domains to derive indicators for EBV in the class ecosystem structure (Pereira et al., 2013) <doi:10.1126/science.1229931>, including horizontal ecosystem extents, fragmentation, and information-theory indices. To process ERSP, users must provide a polygon or geographic administrative data map. Downloadable ERSP include Global Surface Water (Peckel et al., 2016) <doi:10.1038/nature20584>, Forest Change (Hansen et al., 2013) <doi:10.1126/science.1244693>, and Continuous Tree Cover data (Sexton et al., 2013) <doi:10.1080/17538947.2013.786146>. |
Authors: | Wilson Lara Henao [aut, cre] , Victor Gutierrez-Velez [aut] , Ivan Gonzalez [ctb] , Maria C. Londono [ctb] |
Maintainer: | Wilson Lara Henao <[email protected]> |
License: | GPL-3 |
Version: | 2.9.3.2 |
Built: | 2024-11-09 04:08:08 UTC |
Source: | https://github.com/cran/ecochange |
This function is a wrapper of cellStats
used to compute
statistics for spatial indicators in the EBV class ecosystem
structure. To derive the spatial indicators see functions
echanges
and sampleIndicator
EBVstats(ccp, stats, ...)
EBVstats(ccp, stats, ...)
ccp |
|
stats |
|
... |
Additional arguments in |
tibble
.
Wilson Lara Henao <[email protected]> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [ctb], Maria C. Londono [ctb]
## RasterBrick of structural Essential Biodiversity Variables ## covering the extent of a location in the northern Amazon basin ## (Colombia) is imported: path. <- system.file('amazon.grd',package = 'ecochange') amazon <- brick(path.) ## Changes in layers of tree-canopy cover (TC) are computed by ## processing the 'amazon' brick: def <- echanges(amazon, eco = 'TC', change = 'lossyear', eco_range = c(1,80), get_unaffected = TRUE, binary_output = FALSE, mc.cores = 2) ## Function 'EBVstats' is used to compute ecosystem statistics st_amazon <- EBVstats(def) ## A plot of the 'st_amazon' object plot.EBVstats(st_amazon, cex = 1.5, xlab = 'Year', ylab = 'Canopy cover (%)', main = 'Ecosystem changes', sub = 'Northern Amazon', fill = 'Layer')
## RasterBrick of structural Essential Biodiversity Variables ## covering the extent of a location in the northern Amazon basin ## (Colombia) is imported: path. <- system.file('amazon.grd',package = 'ecochange') amazon <- brick(path.) ## Changes in layers of tree-canopy cover (TC) are computed by ## processing the 'amazon' brick: def <- echanges(amazon, eco = 'TC', change = 'lossyear', eco_range = c(1,80), get_unaffected = TRUE, binary_output = FALSE, mc.cores = 2) ## Function 'EBVstats' is used to compute ecosystem statistics st_amazon <- EBVstats(def) ## A plot of the 'st_amazon' object plot.EBVstats(st_amazon, cex = 1.5, xlab = 'Year', ylab = 'Canopy cover (%)', main = 'Ecosystem changes', sub = 'Northern Amazon', fill = 'Layer')
This function produces ecosystem-change maps by masking cell values in a layer of ecosystem changes over a target set of ecosystem variables. The function also allows focusing the ecosystem-change analysis on a species distribution range.
echanges(ps, eco = names(ps[[1:(nlayers(ps) - 1)]]), change = names(ps[[(nlayers(ps))]]), sp_dist, eco_range = c(1, 100), change_vals = 1:19, sp_dist_range = c(1, 1), spread = TRUE, get_unaffected = TRUE, binary_output = FALSE, noDataValue = 0, mc.cores = round(detectCores() * 0.6, 0), ...)
echanges(ps, eco = names(ps[[1:(nlayers(ps) - 1)]]), change = names(ps[[(nlayers(ps))]]), sp_dist, eco_range = c(1, 100), change_vals = 1:19, sp_dist_range = c(1, 1), spread = TRUE, get_unaffected = TRUE, binary_output = FALSE, noDataValue = 0, mc.cores = round(detectCores() * 0.6, 0), ...)
ps |
|
eco |
|
change |
|
sp_dist |
|
eco_range |
|
change_vals |
|
sp_dist_range |
|
spread |
|
get_unaffected |
|
binary_output |
|
noDataValue |
|
mc.cores |
|
... |
If |
Class echanges
.
Wilson Lara Henao <[email protected]> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [ctb], Maria C. Londono [ctb]
Jetz, W., McGeoch, M. A., Guralnick, R., Ferrier, S., Beck, J., Costello, M. J., ... & Meyer, C. (2019). Essential biodiversity variables for mapping and monitoring species populations. Nature Ecology & Evolution, 3(4), 539-551.
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., ... & Kommareddy, A. (2013). High-resolution global maps of 21st-century forest cover change. science, 342(6160), 850-853.
Pekel, J. F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), 418-422.
Pereira, H.M., Ferrier, S., Walters, M., Geller, G.N., Jongman, R.H.G., Scholes, R.J., Bruford, M.W., Brummitt, N., Butchart, S.H.M., Cardoso, A.C. and Coops, N.C., 2013. Essential biodiversity
Sexton, J. O., Song, X. P., Feng, M., Noojipady, P., Anand, A., Huang, C., ... & Townshend, J. R. (2013). Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. International Journal of Digital Earth, 6(5), 427-448. variables. Science, 339(6117), pp.277-278.
## Brick with structural Essential Biodiversity Variables covering the ## extent of a location in the northern Amazon basin (Colombia): path. <- system.file('amazon.grd',package = 'ecochange') amazon <- brick(path.) ## Changes in layers of tree-canopy cover (TC) in the 'amazon' ## brick are computed: def <- echanges(amazon, eco = 'TC', change = 'lossyear', eco_range = c(1,80), get_unaffected = TRUE, binary_output = FALSE, mc.cores = 2) ## Method 'plot.echanges' allows comparing rasters using a common scale bar: plot.echanges(def)
## Brick with structural Essential Biodiversity Variables covering the ## extent of a location in the northern Amazon basin (Colombia): path. <- system.file('amazon.grd',package = 'ecochange') amazon <- brick(path.) ## Changes in layers of tree-canopy cover (TC) in the 'amazon' ## brick are computed: def <- echanges(amazon, eco = 'TC', change = 'lossyear', eco_range = c(1,80), get_unaffected = TRUE, binary_output = FALSE, mc.cores = 2) ## Method 'plot.echanges' allows comparing rasters using a common scale bar: plot.echanges(def)
This function processes ecosystem-change maps from
echanges
to calculate biodiversity indicators,
including ecosystem extent, entropy, fractal dimension, among
others. To sample the indicators across fixed-size grids see
sampleIndicator
.
gaugeIndicator(ps, ..., metric = "area_ha", smp_lsm = list(), mc.cores = round(detectCores() * 0.6, 0))
gaugeIndicator(ps, ..., metric = "area_ha", smp_lsm = list(), mc.cores = round(detectCores() * 0.6, 0))
ps |
|
... |
If |
metric |
|
smp_lsm |
|
mc.cores |
|
Coordinate reference system of the
spatial units must have metric
units
UTM
. Performance in the computation of
ecosystem extents is optimized via the
implementation of the function
tabuleRaster
. Indicators other
than ecosystem extents are calculated
implementing calculate_lsm
.
Class Indicator
.
Wilson Lara Henao <[email protected]> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [ctb], Maria C. Londono [ctb]
Hesselbarth, M. H., Sciaini, M., With, K. A., Wiegand, K., & Nowosad, J. (2019). landscapemetrics: an open source R tool to calculate landscape metrics. Ecography, 42(10), 1648-1657.
O'Connor, B., Secades, C., Penner, J., Sonnenschein, R., Skidmore, A., Burgess, N. D., & Hutton, J. M. (2015). Earth observation as a tool for tracking progress towards the Aichi Biodiversity Targets. Remote sensing in ecology and conservation, 1(1), 19-28.
Pereira, H.M., Ferrier, S., Walters, M., Geller, G.N., Jongman, R.H.G., Scholes, R.J., Bruford, M.W., Brummitt, N., Butchart, S.H.M., Cardoso, A.C. and Coops, N.C., 2013. Essential biodiversity variables. Science, 339(6117), pp.277-278.
Skidmore, A. K., & Pettorelli, N. (2015). Agree on biodiversity metrics to track from space: Ecologists and space agencies must forge a global monitoring strategy. Nature, 523(7561), 403-406.
## RasterBrick of structural Essential Biodiversity Variables ## covering the extent of a location in the northern Amazon basin ## (Colombia) is imported: path. <- system.file('amazon.grd',package = 'ecochange') amazon <- brick(path.) ## Changes in layers of tree-canopy cover (TC) in the 'amazon' ## brick are computed: def <- echanges(amazon, eco = 'TC', change = 'lossyear', eco_range = c(1,80), get_unaffected = TRUE, binary_output = FALSE, mc.cores = 2) ## Function 'gaugeIndicator' is used to compute ecosystem areas ## (default): am_areas <- gaugeIndicator(def, mc.cores = 2) plot.Indicator(am_areas)
## RasterBrick of structural Essential Biodiversity Variables ## covering the extent of a location in the northern Amazon basin ## (Colombia) is imported: path. <- system.file('amazon.grd',package = 'ecochange') amazon <- brick(path.) ## Changes in layers of tree-canopy cover (TC) in the 'amazon' ## brick are computed: def <- echanges(amazon, eco = 'TC', change = 'lossyear', eco_range = c(1,80), get_unaffected = TRUE, binary_output = FALSE, mc.cores = 2) ## Function 'gaugeIndicator' is used to compute ecosystem areas ## (default): am_areas <- gaugeIndicator(def, mc.cores = 2) plot.Indicator(am_areas)
This function can retrieve Geographic Administrative Data Maps
(GADM
).
getGADM(unit.nm = NULL, level = 2, country = "COL", ext = "json", path = tempdir())
getGADM(unit.nm = NULL, level = 2, country = "COL", ext = "json", path = tempdir())
unit.nm |
|
level |
|
country |
|
ext |
|
path |
|
SpatialPolygonsDataFrame
or character
vector of
GADM
units..
Wilson Lara Henao <[email protected]> [aut, cre] (<https://orcid.org/0000-0003-3527-1380>), Victor Gutierrez-Velez [aut] (<https://orcid.org/0000-0003-1338-2020>), Ivan Gonzalez [ctb] (<https://orcid.org/0000-0002-0313-398X>), Maria C. Londono [ctb] (<https://orcid.org/0000-0002-2317-5503>)
## Printing municipalities of Colombia: muni <- getGADM(NA) head(muni)
## Printing municipalities of Colombia: muni <- getGADM(NA) head(muni)
This function processes the extent of a predefined region of
interest (polygon geometry or GADM
unit) to download
ecosystem remote sensing products (ERSP). Downloadable ERSP include
Global Surface Water, Forest Change, and Continuous Tree Cover
data. See listGP
.
getrsp(roi = NULL, ..., lyrs = NULL, path, rewrite.pass = FALSE, verify.web = FALSE, mc.cores = round(detectCores() * 0.6, 0))
getrsp(roi = NULL, ..., lyrs = NULL, path, rewrite.pass = FALSE, verify.web = FALSE, mc.cores = round(detectCores() * 0.6, 0))
roi |
|
... |
If |
lyrs |
|
path |
|
rewrite.pass |
|
verify.web |
|
mc.cores |
|
Downloads of Continuous Tree Cover data require user authentication through the NASA Earth data Login. To obtain a NASA Earth data Login account, please visit: https://urs.earthdata.nasa.gov/users/new.
Path names of the remote sensing products just retrieved, or
character vectors suggesting GADM units/Global Products that can be
used to download ERSP (see NULL
defaults in arguments
'roi'
and 'lyrs'
).
Wilson Lara Henao <[email protected]> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [ctb], Maria C. Londono [ctb]
Pekel, J. F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), 418-422.
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., ... & Kommareddy, A. (2013). High-resolution global maps of 21st-century forest cover change. science, 342(6160), 850-853.
Sexton, J. O., Song, X. P., Feng, M., Noojipady, P., Anand, A., Huang, C., ... & Townshend, J. R. (2013). Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. International Journal of Digital Earth, 6(5), 427-448.
## Polygon of the Colombian municipality of Cartagena del Chaira: load(system.file('cchaira_roi.RData',package = 'ecochange')) ## A Global Surface Water layer ('seasonality') which covers the ## extent of the polygon is retrieved: rsp_cchaira <- getrsp(cchaira_roi, lyrs = 'seasonality', mc.cores = 2, path = tempdir()) file.exists(rsp_cchaira)
## Polygon of the Colombian municipality of Cartagena del Chaira: load(system.file('cchaira_roi.RData',package = 'ecochange')) ## A Global Surface Water layer ('seasonality') which covers the ## extent of the polygon is retrieved: rsp_cchaira <- getrsp(cchaira_roi, lyrs = 'seasonality', mc.cores = 2, path = tempdir()) file.exists(rsp_cchaira)
This function processes regions of interest (a polygon geometry or
GADM
unit) to find corresponding Landsat Path/Row World
Reference System (WRS
) polygons. This function is
internally implemented by getrsp
getWRS(roi = NULL, path = tempdir(), ...)
getWRS(roi = NULL, path = tempdir(), ...)
roi |
|
path |
|
... |
Additional arguments in |
SpatialPolygonsDataFrame
, or set of GADM
units.
Wilson Lara Henao <[email protected]> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [ctb], Maria C. Londono [ctb]
load(system.file('cchaira_roi.RData',package = 'ecochange')) wrs_cchaira <- getWRS(cchaira_roi) plot(wrs_cchaira)
load(system.file('cchaira_roi.RData',package = 'ecochange')) wrs_cchaira <- getWRS(cchaira_roi) plot(wrs_cchaira)
This function prints information about ecosystem remote sensing
products that can be downloaded with getrsp
.
listGP(layer = TRUE, Algorithm = TRUE, author = TRUE, funs = FALSE, api.code = FALSE)
listGP(layer = TRUE, Algorithm = TRUE, author = TRUE, funs = FALSE, api.code = FALSE)
layer |
|
Algorithm |
|
author |
|
funs |
|
api.code |
|
tibble
.
Wilson Lara Henao <[email protected]> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [ctb], Maria C. Londono [ctb]
Pekel, J. F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), 418-422.
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., ... & Kommareddy, A. (2013). High-resolution global maps of 21st-century forest cover change. science, 342(6160), 850-853.
Sexton, J. O., Song, X. P., Feng, M., Noojipady, P., Anand, A., Huang, C., ... & Townshend, J. R. (2013). Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. International Journal of Digital Earth, 6(5), 427-448.
lst <- listGP()
lst <- listGP()
Plots for objects from EBVstats
are printed.
## S3 method for class 'EBVstats' plot(x, y, ...)
## S3 method for class 'EBVstats' plot(x, y, ...)
x |
|
y |
|
... |
Graphical arguments:
|
Wilson Lara Henao <[email protected]> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [ctb], Maria C. Londono [ctb]
## RasterBrick of structural Essential Biodiversity Variables ## covering the extent of a location in the northern Amazon basin ## (Colombia) is imported: path. <- system.file('amazon.grd',package = 'ecochange') amazon <- brick(path.) ## Changes in layers of tree-canopy cover (TC) are computed by ## processing the 'amazon' brick: def <- echanges(amazon, eco = 'TC', change = 'lossyear', eco_range = c(1,80), get_unaffected = TRUE, binary_output = FALSE, mc.cores = 2) ## Function 'EBVstats' is used to compute ecosystem statistics st_amazon <- EBVstats(def) ## A plot of the 'st_amazon' object plot.EBVstats(st_amazon, cex = 1.5, xlab = 'Year', ylab = 'Canopy cover (%)', main = 'Ecosystem changes', sub = 'Municipality: Cartagena del Chaira', fill = 'Layer')
## RasterBrick of structural Essential Biodiversity Variables ## covering the extent of a location in the northern Amazon basin ## (Colombia) is imported: path. <- system.file('amazon.grd',package = 'ecochange') amazon <- brick(path.) ## Changes in layers of tree-canopy cover (TC) are computed by ## processing the 'amazon' brick: def <- echanges(amazon, eco = 'TC', change = 'lossyear', eco_range = c(1,80), get_unaffected = TRUE, binary_output = FALSE, mc.cores = 2) ## Function 'EBVstats' is used to compute ecosystem statistics st_amazon <- EBVstats(def) ## A plot of the 'st_amazon' object plot.EBVstats(st_amazon, cex = 1.5, xlab = 'Year', ylab = 'Canopy cover (%)', main = 'Ecosystem changes', sub = 'Municipality: Cartagena del Chaira', fill = 'Layer')
This function can display level and box plots for objects from
rsp2ebv
, echanges
, or
sampleIndicator
.
## S3 method for class 'echanges' plot(x, y, ...)
## S3 method for class 'echanges' plot(x, y, ...)
x |
|
y |
|
... |
Graphical arguments:
|
Wilson Lara Henao <[email protected]> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [ctb], Maria C. Londono [ctb]
## Brick with structural Essential Biodiversity Variables covering the ## extent of a location in the northern Amazon basin (Colombia): path. <- system.file('amazon.grd',package = 'ecochange') amazon <- brick(path.) ## Changes in layers of tree-canopy cover (TC) in the 'amazon' ## brick are computed: def <- echanges(amazon, eco = 'TC', change = 'lossyear', eco_range = c(1,80), get_unaffected = TRUE, binary_output = FALSE, mc.cores = 2) plot.echanges(def)
## Brick with structural Essential Biodiversity Variables covering the ## extent of a location in the northern Amazon basin (Colombia): path. <- system.file('amazon.grd',package = 'ecochange') amazon <- brick(path.) ## Changes in layers of tree-canopy cover (TC) in the 'amazon' ## brick are computed: def <- echanges(amazon, eco = 'TC', change = 'lossyear', eco_range = c(1,80), get_unaffected = TRUE, binary_output = FALSE, mc.cores = 2) plot.echanges(def)
Plots for objects from gaugeIndicator
are produced.
## S3 method for class 'Indicator' plot(x, y, ...)
## S3 method for class 'Indicator' plot(x, y, ...)
x |
|
y |
|
... |
Graphical arguments:
|
Wilson Lara Henao <[email protected]> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [ctb], Maria C. Londono [ctb]
## RasterBrick of structural Essential Biodiversity Variables ## covering the extent of a location in the northern Amazon basin ## (Colombia) is imported: path. <- system.file('amazon.grd',package = 'ecochange') amazon <- brick(path.) ## Changes in layers of tree-canopy cover (TC) are computed by ## processing the 'amazon' brick: def <- echanges(amazon, eco = 'TC', change = 'lossyear', eco_range = c(1,80), get_unaffected = TRUE, binary_output = FALSE, mc.cores = 2) ## Function 'gaugeIndicator' is used to compute ecosystem areas ## (default metric = 'area_ha'): am_areas <- gaugeIndicator(def, mc.cores = 2) ## A plot of the 'am_areas' object plot.Indicator(am_areas, cex = 1.5, xlab = 'Year', ylab = 'Area (ha)', main = 'Ecosystem changes', sub = 'Northern amazon', fill = 'Forest cover (%)')
## RasterBrick of structural Essential Biodiversity Variables ## covering the extent of a location in the northern Amazon basin ## (Colombia) is imported: path. <- system.file('amazon.grd',package = 'ecochange') amazon <- brick(path.) ## Changes in layers of tree-canopy cover (TC) are computed by ## processing the 'amazon' brick: def <- echanges(amazon, eco = 'TC', change = 'lossyear', eco_range = c(1,80), get_unaffected = TRUE, binary_output = FALSE, mc.cores = 2) ## Function 'gaugeIndicator' is used to compute ecosystem areas ## (default metric = 'area_ha'): am_areas <- gaugeIndicator(def, mc.cores = 2) ## A plot of the 'am_areas' object plot.Indicator(am_areas, cex = 1.5, xlab = 'Year', ylab = 'Area (ha)', main = 'Ecosystem changes', sub = 'Northern amazon', fill = 'Forest cover (%)')
This function integrates ecosystem remote sensing products and produces raster-data sections with the cell values enclosed in a region of interest.
rsp2ebv(ps = NULL, ..., lyrs = NULL, path, sr, ofr = c(30, 30), mc.cores = round(detectCores() * 0.6, 0))
rsp2ebv(ps = NULL, ..., lyrs = NULL, path, sr, ofr = c(30, 30), mc.cores = round(detectCores() * 0.6, 0))
ps |
|
... |
|
lyrs |
|
path |
|
sr |
|
ofr |
|
mc.cores |
|
This function implements
'sf::gdal_utils'
so it assumes the
user's machine has a valid GDAL
installation.
Class echanges
.
Wilson Lara Henao <[email protected]> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [ctb], Maria C. Londono [ctb]
Jetz, W., McGeoch, M. A., Guralnick, R., Ferrier, S., Beck, J., Costello, M. J., ... & Meyer, C. (2019). Essential biodiversity variables for mapping and monitoring species populations. Nature Ecology & Evolution, 3(4), 539-551.
O'Connor, B., Secades, C., Penner, J., Sonnenschein, R., Skidmore, A., Burgess, N. D., & Hutton, J. M. (2015). Earth observation as a tool for tracking progress towards the Aichi Biodiversity Targets. Remote sensing in ecology and conservation, 1(1), 19-28.
Skidmore, A. K., & Pettorelli, N. (2015). Agree on biodiversity metrics to track from space: Ecologists and space agencies must forge a global monitoring strategy. Nature, 523(7561), 403-406.
## A Global Surface Water layer ('seasonality') covering the extent of a ## Colombian municipality Cartagena del Chaira is formated into an ## spatial EBV: load(system.file('cchaira_roi.RData',package = 'ecochange')) rsp_cchaira <- getrsp(cchaira_roi, lyrs = 'seasonality', mc.cores = 2, path = tempdir()) file.exists(rsp_cchaira) season_cchaira <- rsp2ebv(cchaira_roi, lyrs = 'seasonality', path = tempdir())
## A Global Surface Water layer ('seasonality') covering the extent of a ## Colombian municipality Cartagena del Chaira is formated into an ## spatial EBV: load(system.file('cchaira_roi.RData',package = 'ecochange')) rsp_cchaira <- getrsp(cchaira_roi, lyrs = 'seasonality', mc.cores = 2, path = tempdir()) file.exists(rsp_cchaira) season_cchaira <- rsp2ebv(cchaira_roi, lyrs = 'seasonality', path = tempdir())
This function divides into fixed-size grids each of the scenes of
a stack of ecosystem-spatial data and samples a biodiversity
indicator by every grid. To compute biodiversity indicators at the
class and landscape levels, see gaugeIndicator
sampleIndicator(ps = NULL, ..., metric = "condent", classes = 5, min = 1, max = 100, side, smp_lsm = list(level = "landscape"), mc.cores = round(detectCores() * 0.6, 0))
sampleIndicator(ps = NULL, ..., metric = "condent", classes = 5, min = 1, max = 100, side, smp_lsm = list(level = "landscape"), mc.cores = round(detectCores() * 0.6, 0))
ps |
|
... |
If |
metric |
|
classes |
|
min |
|
max |
|
side |
|
smp_lsm |
|
mc.cores |
|
Class echanges
Wilson Lara Henao <[email protected]> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [ctb], Maria C. Londono [ctb]
Hesselbarth, M. H., Sciaini, M., With, K. A., Wiegand, K., & Nowosad, J. (2019). landscapemetrics: an open source R tool to calculate landscape metrics. Ecography, 42(10), 1648-1657.
O'Connor, B., Secades, C., Penner, J., Sonnenschein, R., Skidmore, A., Burgess, N. D., & Hutton, J. M. (2015). Earth observation as a tool for tracking progress towards the Aichi Biodiversity Targets. Remote sensing in ecology and conservation, 1(1), 19-28.
Skidmore, A. K., & Pettorelli, N. (2015). Agree on biodiversity metrics to track from space: Ecologists and space agencies must forge a global monitoring strategy. Nature, 523(7561), 403-406.
## RasterBrick of structural Essential Biodiversity Variables ## covering the extent of a location in the northern Amazon basin ## (Colombia) is imported: path. <- system.file('amazon.grd',package = 'ecochange') amazon <- brick(path.) ## Changes in layers of tree-canopy cover (TC) in the 'amazon' ## brick are computed: def <- echanges(amazon, eco = 'TC', change = 'lossyear', eco_range = c(1,80), get_unaffected = TRUE, binary_output = FALSE, mc.cores = 2) plot.echanges(amazon) ## Function 'sampleIndicator' is implemented to sample a metric of ## conditional entropy (default): def_condent <- sampleIndicator(def, side = 400, mc.cores = 2) plot.echanges(def_condent, cex = 1.5)
## RasterBrick of structural Essential Biodiversity Variables ## covering the extent of a location in the northern Amazon basin ## (Colombia) is imported: path. <- system.file('amazon.grd',package = 'ecochange') amazon <- brick(path.) ## Changes in layers of tree-canopy cover (TC) in the 'amazon' ## brick are computed: def <- echanges(amazon, eco = 'TC', change = 'lossyear', eco_range = c(1,80), get_unaffected = TRUE, binary_output = FALSE, mc.cores = 2) plot.echanges(amazon) ## Function 'sampleIndicator' is implemented to sample a metric of ## conditional entropy (default): def_condent <- sampleIndicator(def, side = 400, mc.cores = 2) plot.echanges(def_condent, cex = 1.5)
This function generates frequency tables for scenes in ecosystem
remote sensing products by wrapping rasterDT
. The
function is mapped by gaugeIndicator
to optimize
computation of ecoystem extents.
tabuleRaster(layer = "", del0 = TRUE, useNA = "no", n256 = FALSE)
tabuleRaster(layer = "", del0 = TRUE, useNA = "no", n256 = FALSE)
layer |
|
del0 |
|
useNA |
|
n256 |
|
data.frame
.
Wilson Lara Henao <[email protected]> [aut, cre], Victor Gutierrez-Velez [aut], Ivan Gonzalez [ctb], Maria C. Londono [ctb]
tabuleRaster(raster(volcano), n256 = FALSE)
tabuleRaster(raster(volcano), n256 = FALSE)